Decimation in more then one dimension

نویسندگان

  • V. Kushnir
  • B. Rosenstein
چکیده

We develop a formalism for performing real space renormalization group transformations of the " decimation type " using perturbation theory. The type of transformations beyond d = 1 is nontrivial even for free theories. We check the formalism on solvable case of O(N) symmetric Heisenberg chain. The transformation is particularly useful to study asymptotically free theories. Results for one class of such models, the d=2 O(N) symmetric σ models (N ≥ 3) for decimation with scale factor η = 2 (when quarter of the points is left) are given as an example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalization Group transformations of the decimation type in more than one dimension

Renormalization Group transformations of the decimation type in more than one dimension. Abstract We develop a formalism for performing real space renormalization group transformations of the " decimation type " using low temperature perturbation theory. This type of transformations beyond d = 1 is highly nontrivial even for free theories. We construct such a solution in arbitrary dimensions an...

متن کامل

Cutting-decimation Renormalization for Diiusive and Vibrational Dynamics on Fractals

Recently, we pointed out that on a class on non exactly decimable frac-tals two diierent parameters are required to describe diiusive and vibra-tional dynamics. This phenomenon we call dynamical dimension splitting is related to the lack of exact decimation invariance for these structures, which turn out to be invariant under a more complex cutting-decimation transform. In this paper we study i...

متن کامل

Kasami type codes of higher relative dimension

Let m,n, d, e be fixed positive integers such that m = 2n, e = (n, d) = (m, d), 1 ≤ k ≤ n e . Let s be a fixed maximum-length binary sequence of length 2−1. For 0 ≤ j < k, let sj be the circular decimation of s with decimation factor 2 n e +1. Then s, s1, · · · , sk−1 are maximum-length binary sequences of length 2 − 1, while s0 is a maximum-length binary sequence of length 2−1. Let C be the F2...

متن کامل

Discrete gravity in one dimension

A model for quantum gravity in one (time) dimension is discussed, based on Regge's discrete formulation of gravity. The nature of exact continuous lattice diffeomorphisms and the implications for a regularized gravitational measure are examined. After introducing a massless scalar field coupled to the edge lengths, the scalar functional integral is performed exactly on a finite lattice, and the...

متن کامل

Polygonal Surface Advection applied to Strange Attractors

Strange attractors of 3D vector field flows sometimes have a fractal geometric structure in one dimension, and smooth surface behavior in the other two. General flow visualization methods show the flow dynamics well, but not the fractal structure. Here we approximate the attractor by polygonal surfaces, which reveal the fractal geometry. We start with a polygonal approximation which neglects th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995